加拿大pc28 > 生命科学 > 通过毫米长距离的电缆细菌跟踪电子,能够实时

原标题:通过毫米长距离的电缆细菌跟踪电子,能够实时

浏览次数:128 时间:2020-03-01

加拿大pc28 1

中国化工仪器网 行业动态】9月20日STM杂志封面文章报美国科学家开发了一个新的设备,能够实时评估身体组织是否获得足够的氧,可以用来预测危重心脏病患者的心脏骤停。这是拉曼光谱被开发为实时监测的临床医疗设备。业内认为,有着重要的里程碑意义。 将探头放置在手术中或手术后的心脏上,可以预测危重心脏病患者的心脏骤停——这是美国波士顿儿童医院和Pendar技术设备制造商的研究人员合作开发的一个新设备,它运用了拉曼光谱技术,能够实时评估身体组织是否获得足够的氧。 9月20日,ScienceTranslational Medicine杂志的封面文章刊登了这一研究成果,并认为,虽然研究是在动物模型上进行的,但有着重要的里程碑意义。 1、具有里程碑意义 几乎所有人都知道,对于危重心脏病患者,一旦心脏骤停发生,即使病人康复,其不良后果也是终身的。 但由于无法做到实时评估身体组织是否获得足够的氧,之前的技术还不能有效预测一个病人的心脏会停止。目前对组织氧测量的标准,被称为混合静脉血氧饱和度,需要反复抽血,额外增加危重病人的风险。更重要的是,无法判断氧气供应是否满足心脏肌肉的动态需求。 主持这项研究的波士顿儿童医院心脏中心医学博士JohnKheir介绍,这个新开发的设备使用了共振拉曼光谱的技术,来测量是否有足够的氧气到达心脏的线粒体。这个装置能够提供与线粒体供氧相关器官特异性的、连续的、可靠的读数。这是个能够监测活体组织中的线粒体,以预测即将发生的器官衰竭的装置。 这也是拉曼光谱被开发为实时监测的临床医疗设备。 作为一种无损、非接触的快速检测技术,虽然拉曼光谱在医疗诊断上的应用与研究,已经在癌病变组织检测与诊断、血液成分分析、动脉硬化检测等领域进行了。此外,之前在医疗诊断上的应用是通过分析识别组织内蛋白、核酸、血脂相关的拉曼光谱峰差异实现的,而这次的应用着眼于更细微的电子积累引起的光谱位移和峰值变化,并准确地捕捉了亚细胞结构的信号。 2、用光监测线粒体加拿大pc28 , 在这项研究中,研究团队创建了一个他们叫3RMR的度量方法,使用共振拉曼光谱的光读数来产生实时氧含量和线粒体功能量化的指标。 当细胞的氧含量过低时,其能量平衡发生变化。电子开始在某些细胞蛋白(比如血红蛋白、肌红蛋白和线粒体细胞色素)中积累。这种能量转移会减少或关闭线粒体能量的产生,也可能引发细胞死亡。结果就是器官损伤或功能障碍,在坏的情况下,心脏骤停。 共振拉曼光谱可以通过激光照射时光如何发生散射,来量化线粒体蛋白质的电子部分。在低氧条件下,电子的增加会使这些分子发生扭曲,改变它们的光谱。 研究小组还使用了的激光和复杂的算法来实时提取信息。据介绍高速、准确地将线粒体信号从其它生物信号中识别出来,是这篇文章重要的科学进展。 线粒体细胞色素、肌红蛋白和血红蛋白在氧合和脱氧状况下拉曼光谱出现的位移和峰值变化 图片来自文献1 3、预测心脏骤停 研究人员先在大鼠模型中测试了该装置。他们发现不管氧递送减少的原因是什么,减少心脏的氧含量后,3RMR就会相应增加。低氧状态10分钟后进行测量,读数增加超过40%。他们开发的设备在预测心脏收缩力和随后的心搏停止上,有97%的特异性和100%的敏感性,优于所有其它测量技术。 研究小组之后在模拟先天性心脏手术的猪模型中进一步测试了该装置。他们能够测量心肌供氧的满意程度,这是之前的设备无法做到的。 该装置先可能的应用是心脏手术期间及术后的氧输送监测。目前的探针是一支钢笔大小,但终,该小组希望开发一个更小的探头,可以放在胸腔内,这样可以对高危时期的病人进行监护。 4、未来其它应用方向 事实上,这是种能够实时地评估在线粒体水平上,是否输送足够的氧气到组织的技术。研究人员认为会有许多外科用途。他们相信该技术还可以在其它组织和器官暴露的操作中,进行对组织活力的监测。潜在的应用可能包括器官移植时的监测和检测四肢血液流动的减少。 Kheir博士还认为,该工具可以在癌症研究方面有所帮助,因为线粒体功能是癌症生物学的中心。 该小组的目标是开发出FDA批准和商业化的线粒体氧合临床监测仪。在此期间,Kheir博士和同事计划寻求批准试验装置来监测心脏病患者。 参考资料: 1) Responsive monitoring of mitochondrial redox states in heart muscle predicts impending cardiac arrest 2) Laser device placed on the heart identifies insufficient oxygenation better than other measures 3) Raman spectroscopy for medical diagnostics — From in-vitro biofluid assays to in-vivo cancer detection 编辑点评 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动,在化学、材料、物理、高分子、生物、医药、地质等领域有着广泛的应用。此次美国科学家将拉曼光谱开发为实时监测临床设备,再一次拓宽了拉曼光谱的应用领域,为拉曼光谱未来发展提供了新的可能。 (原标题:里程碑!拉曼光谱被开发为实时监测临床设备)

一个国际研究小组对电缆细菌有了新的认识。使用激光,研究人员在电子穿过导电细菌时跟踪电子,并根据细菌中的电势,他们计​​算出由于电压损失导致的细菌在深度超过3厘米时不能有效地发挥作用。沉淀。

奥胡斯大学的研究人员与来自荷兰和奥地利的同事一起,使用激光光谱仪作为先进的电压表,通过毫米长距离的电缆细菌跟踪电子;比任何生物体中先前测量的距离长一千倍。

利用他们的测量结果,研究人员还可以计算出通过单个电缆细菌(每毫米约12-14毫伏)的电压损失,从而计算出他们可以达到的无氧海床的距离,而不会失去他们的行为能力电:如果它们向下延伸超过3厘米进入沉积物,它们将陷入困境。原则上,单个细菌可以长于3厘米,但是它们必须上下蜿蜒,以便它们在沉积物中富含氧气和无氧的环境,奥胡斯大学电子生物学中心(CEM)的Andreas Schramm教授解释道。

一张泥泞的画面

CEM基础研究中心成立于2017年,旨在找到7年前在Aarhus Bugt海底发现这些生活电缆后如雨后春天出现的一些问题的答案。

生物体结构如何成为有效的电导体?电缆细菌如何在细胞之间分配能量?他们如何使用能量?那时,研究人员只是对这些细长细菌的情况进行了简单的描述。细菌将电子从无氧泥浆中将海床中的几厘米向下输送到富含氧气的泥浆和表面上的淤泥,这使得它们可以一端食用,另一端呼吸。

..激光更清晰

本文由加拿大pc28发布于生命科学,转载请注明出处:通过毫米长距离的电缆细菌跟踪电子,能够实时

关键词:

上一篇:新意识推翻了小编们前边对植物怎样支配共生的

下一篇:没有了